Evolvable Hardware for Spacecraft Autonomy

Alex Fukunaga, Ken Hayworth, Adrian Stoica
Jet Propulsion Laboratory
4800 Qak Glow 1)[.
Pasadena, CA 91109
626-3066 | 57
alex.fukunaga @)plnasa. gov

Abstract—. Evolvable hardware is arccently proposed
technology i1l which reconfigurable hardware under the
control of an cvolutionary (genctic) algorithim can
automatically self-reconfigure into configurations withthe
desired behavior. This would not only enable the on-
demand generation 01 new functional ity whenneeded, but
(his could provide increased fault-tole rance, as the
hardware would bc able to cope withfaults by reassigning
function cells 10 take over thefaulty ones. This paper
describes ongoing” work at JPL., focusing 011 applications
to onboard image processing.

TABLEOFCONTENTS

1. INTRODUCTION

RELATED WORK

=N

LVOILUT ION OF SIGNATP RO CESSING ALGORITHMS
onN FPGAS

4. CONCLUSIONS/FUTURE woRk

1. INTRODUCTION

Spacecraft autonomy plays a key role in future NASA
missions. An intclligent, autonomous spacecraft must be
ablcto cope with problemsfor which solutions were not
specified on ground, andadaptitself to ncw or changing
environments. Ultimately, all adaptations originate in the
on-board clectronics that control such changes. Thus, it is
important 1 0 address on-board electronics with the
capability toevelve - modify itself to provide increased
cfficiency of the systems it controls. While for analog
circuitry it is clear why circuit modifications are necded
for modifying/adap ting their performance, the adaptation
0 1 computer-rel ated functions could, in principle, be
controlled by softwarcrunning (m general purpose flight
processors.” However, hardware with a design optimized
for certain functionality would provide much higher
processing power. Suchincreased performance could be
achicved using reconfigurable hardware, for exampie
built with ficld-progra mumable gate arrays (FPGA). At

present, the architectures downloaded for T PGA
configurationare designed by humans.

Fvolvable hardware is a new technology in which
reconfigurable hardware under the control of an
cvolutionary (genetic) algorithm can automatically self-
reconfigurcinto configurations with the desired behavior,
This would not only enable the on-demand generation of
new functionality whenneeded, but ibis could provide
increased fault-toler ance, as the hardware would be able
to cope with faults by reassigning function cells to take
over thefaulty ones.

R

Figure. A schematic representation 0f cvolvable
hardware which, through a succession of changes of its
cell functions and connectivity patterns, reaches a
structure producing a desired response (herve, a sine wave).

Extrinsic EHW refers to cvolution i n a softwarce
simulation using models 0 1 the hardware behavior,
downloading” theconfiguration of the best evolved
architecture [() programmable hardware. i n intrinsic
cvolvable hardware (to whichmostof the following”
discussion applies) configuration bits arc iteratively
downloaded (0 hardware, cvaluating a degrec O r
adaptation/fitness by observing the beha vior of the real
hardware.

Hardware evolution is performed through a succession ol
changes o f clementary cell functions and cell inter-
connectivity pattern, thus obtaining increasingly more fit
confligurationsuntil a target functionality is reached. As it
is the casc in nature, evolutionresul tsinindividuals that
are increa singly more adapted 10 their environments, and
canchange themselves 10 match changes in environments
and modi fications of their own goals. Unlike in nature,
cvolution in silicon has the advantage that L'mild be
extremely rapid, with millions of generations or “living”
cite.Llils evaluated in only a few scconds.

Hardware evolution can be seen as an on-chip search for
the circuit/con figuration whose behavior is closestto the

required one (e.g. gives best performance/a daptation to
the environment). The suitability for a parallel hardware
implementation 0 1 evolvable hardware, with multiple
“islands” of concurrently evolving circuits onthe same
chip, or in a multi-chip or stacked configurati on is very
attractive,

Evolvable hardware: a fully parralel process

L Chromozome 1 "l
)
*[Chromozome n *

Genetic creaticn of & now
population uf Chomgroiiey

Reproduction of individuals

with high FIT
!]
Ciren ity Lon
1.
T H “ .
‘ M Fit 0 - 5;2’«1’« ! '
i S e S
: B L e
Ko]
. HA5h
L o i
: SR IO
L pie
=40 KN X
[] XK X

Figure. Parallclimplementation for evolvable hardware

The granularity of hardware building blocks for those
atempting intt insic evolvable hardware is currently
in fluenced by the avail ability of certain programmable
devices. The paper presents results of simulated evolution
attransistor level and discusses on the role Of the level of
granularity and cvolvability.

in this paper, we wilt bricfly review the state Of the art in
the emerging field 01' evolvable hardware, andidentify the
critical issues which must be addressed in order for the
application of this new technology to be feasible to NASA
missions. Wc will then describe early results Of ongoing
research at J})1, on cvolvable hardware (these are briefly
described below).

2. RELATED WORK

This section briefly tc’'views the related work in the field
of evolvable hardware.

Thompson [Tho96a,Tho96b] used a genetic algorithm
[Hol75]110 evolve a Xilinx XU)216 FPGA configuration
to perform tone discrimination between 1 kHz and 10kHz,
waves (by searching the space of possible FPGA
configuration strings).

Higuchi et al [F IM 1497] developed a custom FPGA in
which function blocks perform arithmetic functi ons, in
addition 1o lower- level logical functions (standard FPGA
function blocks perform only logical functions). They
have shown in simulation that this custom FPGA can be

used to c\olve image compression” algorithms and
cqualizers.

Kozactal [KB AKY6]have applied genetic programming
to evolve awide range of analog circuits. ‘J heir system
generates SPICE simulatable netlists. Howe\’cl, although
their evolved solutions canbe simulated, they cannotbe
implemented in practice (e. g., ideal components are
assumed).

Hemmict al [11}1S97] - have developed the AJAM
system, which uses genctic programming to gencrate
VII1)], descriptions of digital hardwarc. This effort is
closestin spirit to our own a)pt-each. However, Hemmi ot
al have (rely reported results using a toy problei (the
simulated ant trail-following (navigation) problem, which
was introduced in [JCCY92] and is a standard testbed
problem in the cvolutionary co m puting community).
Furthermore, in comparison with t h e s-expression
representation we use, VHDLL is a significantly lower level
representation lang uage (as we note below, we believe
thatthcusc of a high-level representation is crucial for
scaling up evolvable hardware to complex, high-level
taskssuchasimage processing),

While the previous work summarized above has
demonstrate the potential Of self-recotlfigLllitlg hardware,
they present several major open problems which needs to
be addressedinorder for sell-recolll’ IgLlril~g hardware to
become a viable technology for JP1I ,/NASA . These
include:

o scaling to complex/h igher-level problems: Can
cvolvable hardware be applicd o complex tasks
which are of interest to JP1 ,/NASA, such as image
processing? With the exception of the work at ETL.
[}1h41+971, the existing work onevolvable hardware
focuses on Jow-level, analog tasks [KBAK9S6] and
“tloy problems” suchastone discrimination
['Tho96a, Tho96b] and simplified navigation tasks
[HHS97].

« generality: 1s it possibleto developa general-purp ose
cvolvable hardware system which can be applied
easily toawide range of task s? This would be
preferable to req uiring that a spacecraft/robot have
on-board a different system for every application
which requires adaptatio n/self-con figuration.

o commodity technology for digital reconfigurable
hardware: s it possible to use industry-de veloped
hardware platforms (i.e., Field Programmable Gate
Ar ays) as the underlying reconfligurable hardware
platform? This would letus leverage the significant
industry R&D investment in FPGAs and provide us
with a stable, high-per formance, reconfigurable
hawdware platform. While previous rescarchers have
used commodity FPGAs [Tho96at TH 8971, these
have been restricted to toy problems, and the question

of whether standard FPGAs can be used for complex
tasks has remained an open problem.

3. EvorurioNn oy HiGH-LEVEL SIGNAIL

PROCESSING ALGORITHMS oN FPGAS

in this scction, we describe ongoing work which seeks (o
address all threc of the above issucs: W have developed
an approach inwhichalgorithms (represente d as 1 Lisp
functions) are cvolved using genetic programming
[Koz92]. These algorithms are then mapped onto a
commodity reconfigurable hardware platform, e.g., a
ficld-prograimmable gale array (1'PGA)using VI ,S1 CAD
bigl~-level synthecsistools. Preliminary results with ibis
approach in the domain of lossless image compression are
reported.

Most existing work on digital evolvable hardware is
fundamentally limited in scalability since they address
evolutionattoolow a levelof abstraction (i.e., finding
good hardware configurations at the FPGA confliguration
bit string 1ewvel). This is analogous to trying to
automatically gencrate complex software programs by
scarching the space of all possible bit strings, andit is
untikely that ibis approach will scale tocomplex tasks.

The only existing digital cvolvable hardware work on a
non-toy problem is the evolution of image compressi on
algorithms and equalizers by Higuchiet al |t IMI+97 .
However, their work req uires a custom-designed digital
reconfigurable hardware platfor m in which cach function
block implements relatively bigtl-level arithmetic
functions (in comparison with standard FPGAs, in which
cach function block implements logical functions. For
digital cvolvable hardware, it is desirable to usc
commodity reconfigurable platforms developed by
industry (i.e., FPGAs), in order toleverage industry-
driven technology improvements (e. g., reconfiguration
speeds, clock speeds, chipsize,power consumption,ctc.).

Wec propose an approachinwhich algorithms that solve
the problems arc automatically generated and adapted as a
high-level programming language function (specifically,
Lisp s-cxpressions). Wc wi |1 appl y the genctic
programming [Koz92] technique (genetic algorithms
applied to s-expressi ons) to scarch for s-expressio ns to
achicve/optimize behaviors on the task. These algorithms
(s-expressions) arc then mapped onto a commodity
reconfigurable hardware platform, e.g., a ficld-
programmable gate ar ray (FPGA) using VI .SI CAD high-
level synthesis/silicon compilation tools. Fach of these
components will be disc ussed in more detail below. A
prototype system based on this approach wasimplemented
for the task of lossless image compression.

A genetic programming system for evolving
algorithims

Wc believethat bigll-level abstractions are essential in
order for a scare h/optimi zation algorithm for cvolvable
hardware to find solutions to complex tasks. In general,
the problem of combinator ial scarch/opt imizati on in
nontrivial scarch spaces requires that the search algorithm
is biased 10 search theregions of the scare. b space where
good solutions are likely to exist (otherwise, the scarch
algorithm wastes all of its time fooking at regions where
therc are no good solutions). Thisscarch bias corresponds
to human expert knowl edge which is applied toan
otherwise intractable problem to make ittractable. To do
ibis, we need toimpose structure on the scarch space. This
is hot possible whenthe representation of the space that is
being is scarched is too low level. For example, if the
representation of the space is the set of all possible FPGA
configuration sirings, this space is muchtoolow level for
us Lo observe/i mpose any sti ucture that would be of use
when trying to automatically configure the FPGA to
perform a image processing algorithm.

Thus, we propose the usc of a high-level, programming
language as the representation o v e r which a scarch
algorithm scarL’tics for candidate soluti ons (o a sclf-
configuring hardware problem. In particular, we propose
thatweuse Lisp s-expressions (based ontheI.ambda
Calculus of Church) as the space which is being searched.

This cnables us to apply techniques dc\’eloped in
automatic programming, such as genctic programming
[Koz92] to clfectively scarch for algorithmic solutions to
a given task. That is, we scarch the space of possible
algorithms for a solu tion to a problem, rather than the
space 01 all possible hardware configurations. The space
of algorithms expressed asLisp s-expression providesus
with a scarch space which is significantly more amenable
to scarch for good solutions, For example, wc canrestrict
the scarch space to the sctof all likely solutions by
restricting the set of functions and terminal sc(s that can
bepresentina candidate s-expression,

The searchtechnique we apply is genetic programming.
Pionecred by Koza | Koz92], the technique has been
applied onawidecrangeof practica problems including
robot control and image processing, While standard
genctic algorithms [110175] typically apply biologically-
inspired evolutionary operators to fixed-length
representations Of task soluti ons, genetic programming
applies analogous operators (sclection, crossover,
mutation) to tree-structured data structures such as I .ISP s-
expressions. Figure 3. [shows an outline of an
evol utionary algorithm. i n genetic programming, the
individuals in the population are 1.isp s-expressions. 1 .1sp
s-expressions are (rees where the lcaves ar ¢ terminals
(cither state data or constant values), and the internal
nodes are functions.

t.=o

initialize P(t);
evaluate P(t) ;

while not. terminate do

P’ (t) := recombine P(t) ;

P’ (t) := mutate P’ (t);
evaluate P(t) ;

P{t41) := select (P''(t) i Q) ;
te=t+1;

end while

Figure:3. 1 Algorithm schema for an cvolutionary
algorithm P is a population of candidate solutions; Q is a
special sct of individuals that has to be considered for
selection, eg., Q=P(t).cvaluatc applies a domain-specific
objective function to compute a objective function value
for a candidate solution (individual)’

The end product of this component of the evolvable
hardwarce system is a Lisp s-expression (see Figare 3.3 for
sample s-expressions evolved for an image compression
application).

A silicon compiler for mapping solutions to a
standard FPGA

The other major componentin the system is responsible
for mapping of the s-expression which solves a problemto
an actual configuration bit string w h i ¢ h can be
downloaded to a reconfigurable hardware platform such
as an FPGA.

There is a significant body of rcecentwork in the
Electronic Design Automation (VLST CAD) research
community on high-ley olynthesis and silicon
compilation, the problem of translating a programming
language lcvel behavioral specification of hardware to a
hardware layoul. We propose toleverage the existing
synthesis/silicon compilation technology to enable the
mapping fromour tligll-level algorithmic solutionsto an
actual FPGA mapping. 1 ndeed, our proposal for the
automatic gene ration of s-expressions which serve asthe
behavioral hardware specification for a CAD system can
be considered anatural extension to the capabilitics of
silicon compilation technology, and has applicat ions for
automa ted hardware design for application specific
hardware systems (ASICs), as well as for self-cor~llglit-it~g
hardware systems.

The current state 0{ theartin silicon compilation” is such
that “well-behaved programs”, arc casily mapped toan
FPGA configuration. The system we propose to usc is
HYPER [C PTR89] (developed at UC Berkeley), which
takes as input expressions in the Silage dataflow
programming languagc [Hil85]}. The translation from the
s-expressions gencrated by our genetic progranmming
syste 111 to a Silage dataflow cxpression (which is then
inputto HYPER) is a very straightforward process and is
casily automated. Currently, the translation is done by
hand - we are now developing a s-expression to Silage
translator.

The output of the silicon compiler canbe downloaded
dircetly to a standard FPGA such as the Xi linx FPGAs.
Note that the compiler canbe modified to target arange of
hardware platforms, so our approach is not dependent on
any particular platform, and is readily applicd to new
digital reconfigurable hardware plat Torms which may
become available in the future.

Optimization of hardware metrics

W ¢ have presented a decomposition o f the self-
configming hardware system into 1) a genetic
programming systemt which generates an s-expression
(algorithm) to performa given task, and 2) asilicon
compilation system which takes the s-expression and maps
it onto an FPGA config uration.

Onc potential concern about our approach is: since the
genctic programming system is operating atthe level of
abstract algorithms, how can we optimize traditional
hardware metries in the resulting FPGA mapping such as
hardware arca usage, power consumption, and clock rate
(speed)’! 1(is important to note the difference between
algorithmic metrics, e.g., thecompressionratioina image
compassion algorithm, and hardware implementation
111 tries such as power consumption. The former are
properties whichareindependent of the hardware
implementation and can be easily measured by eval uating
the algorithmic representation, while the latter can not be
completely evaluated until the hardware mapping is
available.

Since a complete, detailed mapping of an s-expression to
an FPG A mapping is atime-consuming process ((he high-
level synthesis can be done in about 0.5 minutes; detailed
layout can take about 0.5 hours), we can not afford to
actually pecfo rm the full mapping o hardware for every
candidate solution that ne e ds to be evaluated by the
genetic programming system (a typical runol a genetic
programming requites thatthousands of candidate
solutions be evaluated).

Fortunately, there are algorithms (c.g., [RP91]) that can be
u s c(1 toestimate the hardware metrics of the resulting
FPGA mapping from a bigtl-level algorithmic behavioral
specification (i.e., the s-cxpression). Algorithms o f
various fidelities exist, enabling a tradcofl between the
speed atwhich the hardware metrics can be estimated
(ranging from o. | sccondsto up a full,actual place and
route which takes 0.5 hours) and the accuracy 0O f
estimation - the longer the time spent (m the estimation,
the more accurate the results.

Thus, it is possible toaddestimated hardware
implementation metrics such as Speed and power
consumptionto the objective function used by the genetic
programming sy s t e m for the cvolution of the s-
expressions. By doing ibis, we can stmultancously
optimize algorithmic and hardware implementation
metrics.

A Prototype for Lossless Image Compression

To demonstrate the viabil ity of our approach, we
developed a prototype genctic programming system t o
perform adaptive image compression based o n a
predictive coding compression algorithm. Image
compression is anpmblcm of’ significant in space
applications because the communications bandwidth
between a spacecraflt and ground i s limited. An
autonomous spacecraft sufficiently far from FEarth that
needs 10 send science data (images) needs 10 maximally
compress thecimages given the limited communications
bandwidth. Because image compression is extremely
compultationally intensive, a fast, hard ware
implementation of acompression algorithm is desirable. A
self-conllguring hardware system could be used (o
automatically — gencrate a hardware-based image
compression algorithm which is specially adapted for the
class Of images captured by the spacecraft. Current Slate
of the artlossless image compression algorithmsinclude
the CALIC algorithm of Wu and Memon [WM97] and the
L.LOCO-I algorithm o f Weinberger ct al. [WSS96].
Reviews of’ lossless image compression canbefound in
[IMW97a, MW97h].

For an initial proof of concept, we considered the task of
lossless image compression using a nonlinear prediclive
coding algorithm for which tbc nonlincar model was
automati cally generated using a genetic program ming
system. The resulting algorithm can be straightforwardly
mapped to reconfigurable hardware, using a silicon
compiler as described above, and demonstrates the
feasibility of self-configuring hardware to image
processing on an autonomous spaceeraft.

Predictive coding is an image compression technigue
which usesacompact model of animagetopredict pixel
values of an image based on the values of neighboring
pixels. A model of an image is afunctionmodel(x,y),
which computes (predicts) the pixel value atcoordinate
(x,y)ofl an image, given the values of some neighbors of
pixel (x,y), where ncighbors are pixels whose val ucs are
known. Typically, when processing an image in raster
scan order (leftto right, top to bottom), neighbors arc
sclected fromthe pixels above and totheleft of the
current pixel. For example, a common set of neighbors
used for predictive coding is the set {(x-71,y-1), (x,y-1),
(x+1,v-1),(x-1,y))}. Linear predictive coding is a simple,
special case of predictive coding in whichthe model
simply takes thc average of the neighboring val ucs.
Nonlinear modelsassign arbitrarily complex functionsto
the 1110CICLS.

Supposc that we ha ve a pet-kct model of animage, i.e.,
onc which can perfectly reconstruct an image given the
pixel value ol the border pixels (assuming we process the
pixels in raster order). T’hen, tbe valuc of the border pixels
and this compact modelis all that needs to be transmitted
in order 10 transmit the whole information conicnt of the

image. in general, it is not possible 10 generate a compact,
perfect model of an image, and the model generates an
crror signal ((he differences at cach pixel between the
value predicted by the model andthe actual value of the
pixel in the original image.

There are two cxpected sources of compression in
predictive coding basedimage compression (assuming
that the predictive model is accurate enough).First, the
crror signal for cach p i x e should have a smaller
magnitude than the corresponding pixel in the original
image (thercfore requiring fewer bits 10 transmit tbe error
signal). SCC()nd, tbc error signalshouldhavc less entropy
(ban the original message, since the modelshould remove
o f much of tbc “principal components” o f the image
signal'. To complete the compression, the error signal s
compressed using a standard data compression technique
such as Huffman coding orthe dictionary-based l.empel-
Ziv compression algorithms (¢.f. [NG96]) as a ““back-end”
compressor. Dueto the two factors mentioned above, this
should re sult in compressed data which is more compact
than if the back-end compressor (e.g., Huffman coding)
had been applied dircctly 10 theoriginal image,

If we transmit this compressed error signal as well as the
model, then a receiver can reconstruct the original image
by applying an analogous decoding procedure (sce Figure
4.2).

Encoder (Model, Image)
forx= 0o to xmax
for Y=0 to ymax
error [X,¥y] . Image([x,y] - Model (x, Y)
Decoder (Model)
fezx=0 to xmax
for y = o to ymax
Inage[x,y]l= Model (x,y) + Brror(x,y]
Figure:3.2 Algorithm schema for predictive coding.
Model(x,y) is a function that takes tbc coordinates of a
pixel andrcturns a predicted value of that pixel. Image

and Error are two-dimensional arrays

Given animage, our systemuses genetic programming 10
generate a Lisp s-expression which is a nonlincar model
for the predictive coding,

Since the s-expressions gencrated by the genetic
programming system are intended to be mapped onto a
- PGA, the set of functions and terminals was chosen
carcfully to enable efficient (with respect to space and
speed) hardware m appings.

The terminals used for genctic programming were:

- . . -
I the model were perfect, then the error signals would consist of all
O0's, and can be compressed to a single byte,

« valuesof the four ncighboring pixels Image[x-
Ly-1Imagelxy-1] Image[x+ 1,y - 1], Image[x-
Lyl

« conslant values (generated randomly by the
genetic programming algorithm).

The functions used were:
. . - . 2
. arithmetic functions (+,-,%,/)

s MI N(a,b)and MAX(a,b) functions whichreturn
the minimum and maximum values of (heir two
argLIme.ills, respectively.

Results / Discussion

The genetic programming system for evolving models for
predictive coding image compression was cvaluated by
comparing the compression ratio' using the resulting
models against standard lossless compression techniques
onasctof gray scale images. ”

For purposes of comparing the compression provided by
our system, we must consider the total size of the data
which must be transmitted to a receiverin order to allow
the lossless reconstruction of the original image.

A standard back-end compression algorithm needs to be
applied tothe error image. For this experiment, we used
the Unix compress utility, whichappl ics adaptive l.empel-
Ziv encoding to a file.® In addition, note that given the
four pixel ncigbhot-hood we use, the pixel values of the
borders of the image, i.e., thctop row, the leftmost
col umn, and the rightmost column n e e d to be stored
directly (these are the border cases for which wc can not
apply the predictive model). Also, thc model (which is
unique for each image) must also be stored in the
compressed image data. We applied Unix compress to the
border pixels andthce model, and concatenated these to the
compressed crror signal. Finally, two integer values
indicating the size of the image (height, width) were added
to the file. Given this data, we canreconstruct an image
without loss of information.®

Thus, the size of the compressed image Is:
sizeofi CompressedError) + sizeoff CompressedBorder) 4

The division operator used was special protected division operator
which returns 0 in case of division by zero. This is common practice in
genetic programiming, in order to prevent arithmetic exceptions.

The compression ratio of compressed data 18 the size of the
compressed data divided by the size of the original data

4 . . .

In this report, we focus on grey scale images, but the technique can be
straightforwardly extended to color himages by operating on three image
planes (red, blue, green).

5 . .
In future work, we will investigate other back-end compressors such as
arithmetic coding.

[.
We implemented a decompression program that reads a compressed
image file and reconstructs the original image.

sizeoft CompressedModel) + sizeofl2 integers)
The following images were used for evaluation:

o dsn-tallanimage of’ faultlines and clusters of
volcanic domes, ranging from 1.5 to 7.5 kmin
diameter, on the surface of Venus.

« carth-vicar:a satellite image of the carth

For each image, the genctic programming system was run
once, with a population of 2000 and the n umber o f
generations set to 10. Other parameters (e.g., were set to
standard val ues as described in [Koz92]).

The compression ratio of the following arc shown in
‘1"able 3.1

« cvolved: The evolved predictive coding
compression algorithm

« CALIC: A state of the artlossless image
compression algorithm, described in [WM97].

« GIF:GIF compression (a standard lossless image
compression technique).

« JPEGLS: The recently established lossless JIPEG
standard (formerly known as 1 .0CO-1)

Image raw size JPEGLS CALIC Adaptive
carth-vicar | 87591 52891 50763 38171
dsn-tall 783232 22362.4 171537 144338

Table 3.1 Compression algorithm performance on t w 0
science images (file size in bytes).

Figure 3.3 shows a sample nonlincar model (s-cxpression)
cvolved by the genetic programming system for a test
image.

As ‘1'able 3.1shows, the compression ratio using the
cvolved models is, superior to the other methods for the
testimages usedinthe experiments. Note that the evolved
models yield asignificant improvement over CAI.IC,
which is currently the best known lossless i mage
compress ion algorithm. Furthertnore, these results were
obtained without any special tuning 01 algorithm control
parametersfor the genctic programming (it is wellknown
that to maximize performance for a particular problem,
the control parameters for genetic programming such as
population size, crossover rate, ete. need to be tuned for
the particular problem domati n).

However, it should be noted that the genetic programming
system takes several orders of magn itude more lime (o
cvolve a model that achicves its superior results (several
hours per image) thantheother approaches (which runin
a few seconds).

In addition, the performance of a compression algorithm
depends largely on the class of image to whichit is

applied. Although our results are very promising for” the
set of testimages we uscd, a wider range of testimages
nceds 10 beused. we are currently trying 10 obtain the set
o f benchmark images used for the “Next Generation
I .ossless Compression of Continuous-tone Still Pictures™
clfort by the ISO (1 SO/IEC JTC 1 N2395) and evaluate
our approach using this standard image set.

In practice, the evolvable hardware approach is likely to
be most useful in a context in which a large number o f
images from the same class need to be compressed and
transmitted. As an cxample, we cnvisonthe following
scenario: consider a deep space probe which needs to send
thousands of similar images (e.g., atmospheric images)
from the mission target (say, Pluto) back to Earth. The
probe would firstsamplea few images andevolvea single
nonlincar predictive model which is likely to perform well
for the sct of images that need to be transmitted. This
could be achicved, for example, by a simple modification
to our system in which the evolving models are scored
according to their average performance on a small subset
of the images, rather than ona single image. This model
would then be mapped onto the on-board FPGA using the
silicon compiler, and the entire set of images would be
compressed using this model and transmitted brick to
‘arth An alternate strategy would be to downloada fCw”’
sample images back to Earth, where nonlincar modcl is
cvolved for a sample o f the images using a high-
performance ground-based compulcr,7 and is uploaded
back to the spacecraft. This uploaded model i s then
mapped on the on-board FPGA and used to co mpress all
the images, which are then sent back to Earth. We will
investigate (his scenario further in future work.

(- (4 (- X4 0.49115) -0.6"/ 691)
v (+ (- (+ (4 X2
- x4
(- xI xI))) X4) xI) X4)
(+(+ (/ -0.06982 -0.18'/ 61)
(4+X4 -0.46071))
/x4
(+ -0.7318”/ x4)))))

Figure:3.3 Evolved s-cxpression for a nonlincar
predictive model of the faceimage

4. CONCLUSIONS/FUTURE WORK

In this paper, we have described the following:

¢ Decvclopment of an architecture for digital cvolvable
hardware based on a genetic programming system
that generates algorithmic representations of solutions
to problems and a silicon compiler which maps the
algorithm to hardware (a commodity FPGA).

7

Because genetic algorithms are extremely paratlelizable, it should be
possible to perform the evolution of the model in a few ninutes on the
ground.

« Proof Of conceptimplementation and eval uation of a
software prototype of the genetic programming
compo nent of an evolv able hard ware syste m for
lossless image compression. The results are quite
promising (compression ratios better than state o f the
artlossless algorithms were achicved).

We intendto extend this workinscveral directions, We
will implement the translator from Lisp s-expressions (o
Silage dataflow expressions, which willenable Lis to use
the HYPER silicon compiler and provide with usa
complete, digital evolvable hardware system framework.

A particularly interesting rescarch topic is the
optimization of hardware implementation. Exploration of
this topic is likely to yield results that are applicable not
only to evolvable hardware for space applications, but for
clectronic design automation (VI.SICAD)in general.

The work on the prototype lossless image compression
can be extended i na number ways. Additional
function/terminal sets can be used for the genetic
programming system. Of particular interest is the
discovery of aset of minimal functions which provide
good compression and are particularly amenable to FPGA
mapping. With respect to alternative terminal sets, 1bis
work will be focused on the use of different
neighborhoods (recall that we used a simple 4 pixel
neighborhood for predictive coding). We curtently apply a
single model to the entire image, one way to obtain better
compression is to split the images into blocks (e. g., 32
pixel by 32 pixel blocks)andevolvea separate model for
cach block. We note that by quantizing the crror signal, it
is possible to perform lossy image compression, a related
problem with many practical applications.

Finally, we will extend the scope of our investigation by
applying our archhitect ure to other image proces sing
algorithms such as edge detection

Inadditoin to digital evolvable hardware, wc arccurrently
developing analog digitathardware. “I'bet-c is currently no
standard rcconfigLIt'able analog platform (i.e., the
cquivalent of an FPGA in the analog do1 nain). Thug, we
arce developing candidate reconfigurable analog hardware
platforms which can be used as the foundation for analog
cvolvable hardware.

Rapidly Reconfigurable Analog Computer for Evolving
Dynamic Systems

Anaother direction that we started exploring in evolvable
hardwareis related toe\ "olVitlgeo Ill1>lexcly rl:dtllic systems
(with applications for example to spacecraft control”
problems). Wc have developed an algorithm which makes
use of a rapidly reconfigurable analog computer

implementing dynamic systems, A Sla[c-space
decomposition of the dynamic system is made, and then
local optimization, (hill climbing) is used to obtain the
desired behavior (i.e., the control problem sol ution). We
have designed andimplemented a board level prototype
for the above hardware architecture. The current bead
level prototype can switch among 2048 configurations
(1 illgcol]tigLtrilli or~).” Wc have demonstrated theuse of this
architecture for a functt on approximation problem. In
addition to evol vable hardware, this hardware can be used
in a large variety of’ applications, ¢.g. as analog math co-
processor for physical scicnce simulations, to perform
Cellular Neural Networks style fastimage processing, etc.

We arc extending this work asfollows: we are extending
t h e above simulation work, beyond the function
approximation stage, (o evolve complete dynamic systems
using the above slate-spare decomposition method. We
will test the above technique by evolving control problem
benchmarks.

Architecture Design and Simulation of a CMOS Chip for
Analog Evolvable Hardware

Kozaetal. [Koz96]have evolved in simulation a varicty
of analog circuits. Unfortunately, their approach can not
be used dircetly for evolving inhardware. Also, currently,
there is no reconfigurable analog hardware suitable for
cvolution (i.e. with cnough resources and fast
reconfiguration). Wc are investigating the design and
cvolution of anevolvable CMOS chip.

W c have performed a series of designs and simulations.
When the scarch space w a's bounded by the number o f
components a priori known as the minimal number of
components providing the desired functionality, evolution
inthe space of electronic components proved hind. For
known circuit topologies we evolved the values for each
PMOS/NMOS transistor’s channel Width and Length. we
are currently devel oping an ar chitecture that would
support such implementation and wc¢ will attempt a
simulated cvolutionon the designed evolvable CMOS
chip. This approach will enable evolving analog circuits
directly in hardware.

ACKNOWLEDGEMENTS

The research describedin this paper was performed by the
Center for S p ace Microelectronics Technology, Jet
Propulsion Laboratory, California Institute of Technology,
and was sponsored by the JPL Dircctor’s Discretionary
Fund.

REFERENCES

[CPTRE9] CM. Chu, M. Potkonjak, M. Thaler, and J.
Rabacy. Hyper: an interactive synthesis environment for
high performance real time applications. In Proc. 1EEE
Int. Conf. on Computer Design: VLS in Computers and
Processors, pages 432-5, 1989

[}1?1S97] }1. Hemmi, ‘I, Hikage, and K. Shimohara.
Adam: A hardware cvolutionary system. In IEEE
International Conference on Ivolutionary Computation,
pages 193-196, 1997.

[HiI8S] P. Hilfinger. A high-level language and silicon
compiler for digital signal processing. ln Proceedings of
the IEEE 198.5 Custom Integrated Circuits Con ference,
pages 213-10, 1985.

[HMI+497] T. Higuchi, M. Murakawa, M. Iwata, 1.
Kajitani, W. Liu, and M. Salami. Evolvable hardware at
function level. In IEEE International Conference on
Evolutionary Computation, pages 187-192, 1997,

[Hol75] J. Holland. Adaptation in natural and Artificial
Systenis. University of Michigan Press, 1975,

[JCC4+92] D. Jefferson, R, Collins, C. Cooper, M. Dyer,
M. Flowers, R. Korf, C. Taylor, and A. Wang. Yvolution
as a theme in artificial life: The genesys/tracker system. In
C. Langton, C. Taylor, J. Farmer, and S. Rasmussen,
editors, Artificial Life //, pages 549-577. Addison-Wesley,
1992,

[KBAK96] J. Koza, I.H. Bennett, D. Andre, and M.A
Keane. Automated wywiwyg design of both the topology
and component values of analog electrical circuits using
genetic programming. In Proceedings of Genetic
Programmniing Conference, pages 28-31, 1996.

[Koz92] 1. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MITT Press, 1992,

[MW97] N. Memon and X. Wu. Recent progress in
losslessimage coding. The Computer Journal, to appear,
1997.

[Nit2’ar] N. Memonand X. Wu. Lossless compression. In
CRC Handbook of Communication. 1 996 (toappcar).

[NG96] M. Nclson and J -t .. Gailly. The Data
Compression Book (second edition). M&T Books, 1996.

[RP91] J. Rabacy and M. Potkonjak. Complexity
estimation for real time application specific circuits. In
ESSCIRC '91. Seventeenth Furopean Solid State Circuits
Conference. Proceedings, pages 201-204, 1991.

[Tho%6a] A. Thompson. An evolved circuit, intrinsic in
silicon, entwinedin physics. In International Conference
on Evolvable Systems. Springet Verlag Lecture Notes in
Computer Science, 1996.

[Tho96b] A. Thompson. Silicon evolution. In
Proceedings of Genetic Programming Conference, 1990.

[WMI7]X Wuand N. Mcmon. Context-based, adaptive,
10 SSICSS image codes. [EEE Transactions on
Communications, 45(4), 1997.

[WSS96] M.J. Weinberger, G. Scroussi, and G. Sapiro.
Loco-i: A low complexily, context-based, lossless image
compression algorithm. In Proceedings of the Data
Compression Conference (DCC'96), pages 140-149,
1996.

